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We discuss the entropy of nonequilibrium steady states. We analyze the so-
called spontaneous production of entropy in certain reversible deterministic
nonequilibrium system, and its link with the collapse of such systems towards an
attractor that is of lower dimension than the dimension of phase space. This
means that in the steady state limit, the Gibbs entropy diverges to negative
infinity. We argue that if the Gibbs entropy is expanded in a series involving
1, 2,... body terms, the divergence of the Gibbs entropy is manifest only in terms
involving integrals whose dimension is higher than, approximately, the Kaplan–
Yorke dimension of the steady state attractor. All the low order terms are finite
and sum in the weak field limit to the local equilibrium entropy of linear irre-
versible thermodynamics.
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1. INTRODUCTION

Over the last twenty years a set of dynamical systems has been defined that
realistically model classical many particle nonequilibrium steady states.
These dynamical systems can be used to accurately calculate the transport
properties of fluids, their design being based on a precise connection
between response theory for mechanical perturbations and various exact
statistical mechanical expressions, such as Green–Kubo relations, for
boundary driven thermal transport processes. (1) These dynamical systems can
also be used to study changes to the molecular structure and conformation



caused by the action of the dissipative nonequilibrium forces that prevent
the systems from relaxing to equilibrium. (1) In these systems it is frequent
for fictitious (i.e., unnatural) mechanical forces to replace subtle thermal
forces that act on systems by virtue of boundary conditions (walls main-
tained at different temperatures or walls that are maintained in relative
motion). Fictitious deterministic thermostats that may operate homoge-
neously throughout the system, or that may operate within boundary walls,
remove the dissipative heat generated in the system by the application of
the dissipative fields, thereby allowing the possibility of a nonequilibrium
steady state. We refer to these systems as Non-Equilibrium Molecular
Dynamic (NEMD) systems.

A considerable literature (cf. refs. 1, 2, and references therein) demon-
strates that nonequilibrium statistical mechanics can be used to validate
NEMD systems in the sense that these dynamical systems can be used to
calculate (essentially exactly), the nonequilibrium properties of real thermal
systems. This exactness is usually limited by the approximate nature of the
potential functions used to model molecular interactions. In the linear
response regime, close to equilibrium, given an assumed molecular poten-
tial function, the calculated properties can usually be shown to be exact.
For example, thermostatted time correlation functions are equal at all
times (to leading order in the particles number N) to the corresponding
adiabatic equilibrium correlation functions (cf. Section 7 in ref. 2). All the
standard Navier–Stokes transport processes for both single component (1)

and multicomponent mixtures, and certain types of liquid crystals, (2) can be
characterized essentially exactly in the linear response regime. Even for the
nonlinear regime far from equilibrium, many algorithms have been devel-
oped that model real systems extremely accurately. (1)

Despite these successes, one feature of NEMD models has puzzled
some theoreticians: the equations of motion for steady state NEMD
systems cannot be usually derived from an Hamiltonian, and therefore
phase space volumes are not preserved by the associated dynamics. At first,
this looks in striking contrast with the behavior of real systems subject to
the action of a real thermostat, which is fully Hamiltonian.

However, there are various facts that one should keep in mind.
Suppose we have a Hamiltonian model of a nonequilibrium steady state
system made of a small nonequilibrium system which is subject to an
external field and is in contact with a large (many particles) thermostat.
The combined subsystem and thermostat are Hamiltonian and therefore
phase space conserving. In order to treat a nonequilibrium steady state, the
number of degrees of freedom in the thermostat must be very much larger
than those of the nonequilibrium subsystem. Only when this is the case
can we be sure that the heating rate is small relative to the characteristic
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relaxation time scales of the subsystem and the subsystem can therefore be
regarded as being effectively at constant temperature.

Now, if we project out the myriad of thermostatting degrees of
freedom, and consider only the motion of the (relevant) degrees of freedom
of the subsystem, then it is obvious that the remaining degrees of freedom
will exhibit a motion which is not phase space conserving.3 The major

3 Take a 2-dimensional phase space with some volume preserving dynamics which combines
both stretching and compressing local directions. If we project out one of the phase space
coordinates, then the dynamics does not preserve the volumes in the projected subspace.

effect of the myriad of thermostatting degrees of freedom is to prevent the
natural heating that would otherwise occur in the dissipative Hamiltonian
subsystem. Thus, one expects that the motion of the projected subsystem
will exhibit compression as the result of heat being absorbed by the ther-
mostatting degrees of freedom.

It is of course very cumbersome to treat this large composite Hamil-
tonian system theoretically. The deterministic and time reversible thermo-
stats employed in NEMD aim at accomplishing this ‘‘projecting out’’ of
irrelevant thermostatting degrees of freedom in a concise and clearly
defined manner. In NEMD, the equations of motion for the projected
subspace are derived by applying Gauss’ Principle of Least Constraint (1) to
the relevant degrees of freedom, in order to mimic the effect on the sub-
system of the thermostatting degrees of freedom. Thus, we apply Gauss’
Principle to fix the temperature or the internal energy etc. of the relevant
subsystem. The constraint force required to enforce the thermodynamic
constraint has the smallest magnitude possible. In this sense the constraint
exerts the least possible influence on the phase space trajectories in the
relevant phase space. In fact, for holonomic constraints Gauss’ Principle is
equivalent to Hamilton’s Principle of Least Action.

One expects that different representations of the same physical system
should be possible, as is the case in equilibrium statistical mechanics, where
one observes that, for instance, the canonical and microcanonical descrip-
tions become equivalent in the thermodynamic limit. In fact, one expects
the detailed structure of any (proper) thermostat should not to play a fun-
damental role in determining the properties of the system to which the
thermostat is applied—especially in the limiting weak field regime close to
equilibrium. This leads to the possibility of extending the theory of equiva-
lence of ensembles, which is well developed in equilibrium statistical
mechanics, to the case of near equilibrium systems. That this may actually
be possible is indicated by various works published in the last decade or so
(see, e.g., refs. 2–5). Then, one may argue that different models of a non-
equilibrium system could be equally valid in the weak field limit. For
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instance, using stochastic boundary conditions and deterministic thermo-
stats leads to different phase space distributions, but should not lead to
different transport properties. Thermostatted dynamical systems are also
validated by recent experimental results concerning entropy production
rates. (6, 7)

In this context, it is striking that Gibbs entropy of the nonequilibrium
steady state generated in the NEMD systems is not constant, like all other
thermodynamic properties (energy, pressure, temperature, specific heat,
etc.). The Gibbs entropy decreases in time towards negative infinity. It
seems to us that this problem cannot be dismissed by simply arguing that
the Gibbs entropy shouldn’t be used at all in nonequilibrium statistical
mechanics, or invoking the ‘‘non-physical’’ nature of NEMD systems. In
fact, it is obvious that a diverging quantity such as the Gibbs entropy
cannot be the physical entropy of any system, but the problem persists for
situations arbitrarily close to equilibrium, and for all deterministic dissipa-
tive dynamics. Hence the question is: why does this quantity behave in such
a peculiar way?

Unlike other thermodynamic properties the Gibbs entropy, SG, of a
system is not a simple phase average but is rather a functional of the
N-particle phase space distribution function f(C, t) which characterizes the
time evolution of an initial ensemble f(C, 0), where C is one point in the
2dN dimensional phase space W. Typically the initial ensemble of NEMD
simulations is one of the classical equilibrium ensembles of statistical
mechanics (microcanonical, canonical, grand canonical, etc.). Without at
this stage being explicit about the initial ensemble, the Gibbs entropy of a
nonequilibrium N-particle system at time t, in dC Cartesian dimensions, is
defined as:

SG(t)=−kB F dC f(C, t) ln[f(C, t)], (1)

where kB is Boltzmann’s constant. The form of the equations of motion
which define the dynamical system and which implicitly control the time
evolution of all properties including the Gibbs entropy take the generic
form,

q̇ i=
pi
m
+Ci(C) ·Fe

ṗi=Fi(q)+Di(C) ·Fe−Sia(C) pi

(2)

where Fe is the dissipative external field that couples to the system via the
phase functions C, D, and a is a Lagrange multiplier used to constrain the
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value of a properly chosen dynamical quantity. The term a in Eq. (2) acts
in a way to remove (or add) the heat generated (or absorbed) in the system
by the action of the external field, hence the name ‘‘thermostat.’’ It is con-
venient to employ a switch, Si, which controls how many particles are
employed as thermostats (Si=1 only for wall particles or Si=1, -i, defines
the so-called homogenous thermostat (8)). It is worth pointing out that as
described, Eqs. (2) are time reversible and heat can be both absorbed and
given out by the thermostat. However, in accord with the Second Law of
Thermodynamics, in dissipative dynamics the ensemble averaged value of
the thermostat multiplier is positive at all times (4) (Oa(t)P > 0, -t > 0).

Obviously, one should not confuse a real thermostat composed of a
very large (in principle, infinite) number of particles with the purely math-
ematical—albeit convenient—term a. In writing (2) it is assumed that the
momenta pi are peculiar (i.e., measured relative to the local streaming
velocity of the fluid or wall). The thermostat multiplier may be chosen, for
instance, to fix the internal energy of the system H0 —;i: Si=0

[p2i /2m+
1/2;j f(qij)], where we have assumed that particles i, j interact through
a pair potential, f, in which case we speak of ergostatted dynamics, or
we can constrain the peculiar kinetic energy of the wall particles KW —

;Si=1
p2i /2m=dNWkBTW/2, with NW=; Si, in which case we speak of

isothermal dynamics. The quantity TW defined by this relation is called the
kinetic temperature of the wall. For homogeneously thermostatted systems,
TW becomes the kinetic temperature of the whole system and NW becomes
just the number of particles N, in the whole system.

One can use the time reversible Liouville equation corresponding to (2)
to calculate the change in the Gibbs entropy of an ensemble of systems
representing a given nonequilibrium physical situation, and then check how
this change is related to the expected behavior of the real (physical)
entropy in that nonequilibrium situation. The expectation is that the real
entropy of the nonequilibrium steady state is finite, and smaller than that
of the equilibrium state at the same thermodynamic state point (of same N,
V and energy). Indeed, if the entropy is viewed as a measure of the degree
of disorder in the system associated with the microscopic motions, this
disorder is lower in a nonequilibrium steady state than in the correspond-
ing equilibrium state. However, if we differentiate (1) we see that, for an
N-particle system,

ṠG(t)=−kB F dC{1+ln[f(C, t)]} “f(C, t)/“t

=−kB F dC ln[f(C, t)] “f(C, t)/“t
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=kB F dC ln[f(C, t)] “/“C · [Ċf(C, t)]

=−kB F dC[Ċ ·“/“C] f(C, t)

=kB F dC f(C, t) “/“C · Ċ

=−dCNWkB F dC f(C, t) a(C)+O(1)

=−dCNWkBOa(t)P (3)

In deriving (3), it was assumed that all the boundary terms arising from the
successive integration by parts, vanish. This is the case for confined systems,
whose N-particle distribution function vanishes at and outside the con-
tainer walls, and for distribution functions that decay sufficiently rapidly
with increasing momenta. For systems under periodic boundary conditions,
the distribution function can be defined by mapping the whole infinite
phase space to a torus representing the fundamental domain (the periodic
tile of the whole phase space), and this likewise forces spatial boundary
terms to vanish, while the momentum boundary terms vanish for the same
reason as for confined systems. In the last equality, the O(1) term has been
neglected, assuming that NW is large.4 We also note that if the deterministic

4 The assumption that N, NW are large will be made throughout this paper. For example, we
will refer to the ostensible dimension of phase space as 2dCN rather than 2dCN−2dC−1, etc.

thermostat is applied homogeneously, the only change in (3) is that the
factor NW changes to N.

Equation (3) shows that the rate of change of the Gibbs entropy of the
entire system (including the walls) is related to the ensemble average Oa(t)P,
of the thermostat multiplier a, that is positive for all times t after the
external dissipative field is applied. (9) In accord with the Laws of Thermo-
dynamics, the ensemble average of the work performed on the system by
the external field is positive and appears as heat, which is removed by the
thermostat in order to maintain the system at a constant internal energy or
kinetic temperature. Equation (3) then shows that, after the decay of initial
transients, the rate of decrease of the entropy is constant, implying that the
Gibbs entropy of a steady state system diverges to negative infinity! On the
other hand, if there is no thermostat (e.g., in the absence of a driving field),
the Liouville equation predicts that the Gibbs entropy of an arbitrary
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Hamiltonian system subject to an external dissipative field, is constant!
This result was known to Gibbs (1902). (10)

Consider the ergostatted dynamics, characterized by the equation

Ḣ0(C) — −J(C) VFe−2KW(C) a(C)=0, (4)

where J is the dissipative flux due to Fe and V is the volume of the system.
Equation (4) is a statement of the First Law of Thermodynamics for an
ergostatted nonequilibrium system. The energy removed (or added) to the
system by the ergostat must be balanced instantaneously by the work done
on (or removed from) the system by the external dissipative field, Fe.

In analogy with conventional thermodynamics, it is natural to define
the total rate of absorption (or emission) of entropy by the ergostat as,

S(t) — 2KW(C) a(C)/TW(t)=dCNWkBa(t)=−J(t) VFe/TW(t), (5)

[i.e., it is the heat that flows to (or is removed from) the ergostat divided
by its absolute temperature]. The entropy flowing into the ergostat results
from a continuous generation of entropy in the dissipative system. The
so-called entropy source strength s(r) is the rate of entropy production per
unit time and per unit volume at a position r, in the system. The entropy
source strength can be shown, close to equilibrium, to be a product of the
so-called (local) thermodynamic fluxes and forces, and in a steady state the
entropy that is produced spontaneously throughout the system is convected
and/or conducted to (or away from) the boundary thermostat in which it
is absorbed (or released).

Comparing (3) and (5) we see that for ergostatted dynamics

OS(t)P=−ṠG(t). (6)

The ensemble averaged entropy absorbed (emitted) by the ergostat per
unit time is equal and opposite to the rate of change of the Gibbs entropy
of the entire system.

Our definition (5) invokes a kinetic measure of the time dependent
thermodynamic temperature. There are many measures of the temperature
that could be used. (11) Sufficiently close to equilibrium, where the condition
of local thermodynamic equilibrium holds, each of these measures lead, as
they do at equilibrium, to identical values for the estimated thermodynamic
temperature. Further from equilibrium, (5) is a formal definition of the rate
of absorption of entropy by the ergostat, since classical thermodynamics
and linear irreversible thermodynamics say nothing on this subject beyond
the strictly equilibrium and local equilibrium regimes.
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For an ensemble of constant internal energy nonequilibrium systems,
we have

SG(t)+F
t

0
OS(s)P ds=Seq(0), (7)

where it is always understood that the system is at equilibrium at t=0, and
Seq(0) is the corresponding initial equilibrium entropy.

Similarly to ergostatted systems, for isothermal dynamics we obtain:

lim
tQ.

OS̄(t)P=− lim
tQ.
S̄̇G(t), (8)

where the bar indicates time averaging for phase variables X, i.e.,
X̄(t)=1

t >
t
0 X(s) ds .

2. ERGODICITY

Most of nonequilibrium statistical mechanics is based on the assump-
tion that the systems being studied are ergodic. For example, the Chapman–
Enskog solution of the Boltzmann equation is based on the tacit assump-
tion of ergodicity. The response theory relations for Navier–Stokes trans-
port processes such as shear flow show that if the shear rate c(t) takes the
form of a Heaviside step function of time, c(t)=G(t) c, then the time
dependent response of an equilibrium ensemble of systems takes the form (1)

OPxy(t)P=
−V
kBT

F
t

0
dsOPxy(s) Pxy(0)P c (9)

where Pxy is the off diagonal term of the pressure tensor, and the brackets
O · · ·P denote the average over an ensemble that is at equilibrium at t=0,
but which has subsequently had an ergostatted shear applied c(t)=G(t) c.
In the zero shear rate limit, Eq. (9) reduces to the familiar Green–Kubo
relation which also describes the ensemble averaged response, and the right
hand side of (9) involves an equilibrium (i.e., c=0) time correlation function.

In the long time limit, the strain rate dependent shear viscosity

g(c) — lim
tQ.

OPxy(t)P
c

(10)

is easily seen to be

g(c)=
−V
kBT

F
.

0
dsOPxy(s) Pxy(0)P. (11)
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In practice, however, experimentalists usually substitute time averages for
ensemble averages. They therefore view the systems they study as ergodic:

lim
tQ.

OPxy(t)P
c

=lim
tQ.

P̄xy(t)
c
. (12)

The fact is that experimentally one usually does not measure transport
coefficients as ensemble averages. Almost universally transport coefficients
are measured as time averages. Arguably, the clearest indication of the
ubiquity of nonequilibrium ergodicity, which justifies the use of relations
such as (12), is that empirical data tabulations assume that transport coef-
ficients are single valued functions of both the thermodynamic state point
(N, V, T) and possibly the strength of the dissipative field. The tacit
assumption of nonequilibrium ergodicity is so widespread that it is
frequently forgotten that it is in fact an assumption.

The precise conditions for ergodicity are not known. However, systems
that appear ergodic at equilibrium usually remain ergodic under mild per-
turbations, away from equilibrium.

Assuming ergodicity, Eq. (6) becomes,

lim
tQ.
S̄(t)=− lim

tQ.
ṠG(t). (13)

It is important to recall that the notion of ergodicity used here does not
require that a single phase space trajectory approaches within an arbitrarily
small tolerance every point in the ostensible phase space.5 This notion only

5 In fact, quite the opposite may be true.

requires that under a given set of macroscopic conditions, time averages
and ensemble averages should be equal.

3. LYAPUNOV EXPONENTS

Since the divergence of the vector field Ċ is dCNWa+O(1), the formal
solution of the Liouville equation

df(C(t))
dt

=−f(C(t))
“

“C
· Ċ((C(t)) (14)

is given by

f(C(t), t)=f(C(0), 0) exp 5F t
0
ds dCNWa(s)6 . (15)
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From the definition of Lyapunov exponents, it is then obvious that if
the trajectory in phase space originates from an initial point C(0)=C0
picked at random with respect to the equilibrium probability distribution,
and since the distribution function is normalized, the long time average of
the phase space compression factor is related to the sum of the local
Lyapunov exponents, by

lim
tQ.
dCNW ā(t; C0)=− C

2dCN

i=1
l i(C0). (16)

Assuming ergodicity, local Lyapunov exponents {l i(C0)} take the
same values except for a set of initial C0 of zero probability; thus, sub-
stituting (16) into (3) we obtain:

lim
tQ.
ṠG(t)=kB C

2dCN

i=1
l i. (17)

We can understand this relation in a more physically revealing way by
noting that if the distribution function is approximately constant over the
accessible phase space then,

SG(t) % kB ln[VC(t)]=SB(t), (18)

where VC(t) is the volume of the accessible phase space at time t, and SB is
the Boltzmann entropy. More precisely, we have SG(t)=kB ln VC(t) for the
probability distributions that are constant over the accessible phase space
of volume VC(t), (i.e., for those distributions defined by:

mt(dC)=˛
dC/VC(t) if C ¥ Wt … W

0 otherwise
(19)

where Wt is a (possibly time dependent) subset of the full or ‘‘ostensible,’’
phase space W, and dC is a volume element of W). Differentiating (18) with
respect to time gives:

ṠG(t) % kB
V̇C(t)
VC(t)

(20)

which links the variation of the Gibbs entropy to the rate of decrease in the
volume of accessible phase space. On the other hand, the time average rate
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of variation of VC(t) is, in ergodic systems, given by the sum of the
Lyapunov exponents of the system, which leads to:

lim
tQ.
ṠG(t) % kB C

2dCN

i=1
l i. (21)

This leads us to a consideration on the Kaplan–Yorke dimension DKY, (12)

defined by

DKY=NKY+
;NKY
i=1 l i

|lNKY+1 |
, (22)

where the Lyapunov exponents are arranged in decreasing order
(l1 \ l2 \ · · · \ l2dCN), and NKY is the largest integer for which ;NKY

i=1 l i is
positive. We can say that, DKY estimates the ‘‘dimension’’ of that subset of
the phase space whose volume does not decrease with time. In other words,
since DKY can be a noninteger, finite volume elements of integer dimension
m < DKY, with sides aligned with the eigendirections associated with the
first m Lyapunov exponents, l1,..., lm, expand in time, while volume ele-
ments of integer dimension m > DKY, contract in time.

This implies that if we could compute what we call the reduced Gibbs
entropy over the appropriate volume of dimension DKY, we would find that
the steady state value of such a quantity is finite and is a constant of
motion. This is precisely the reason why SG is a constant for Hamiltonian
systems: DKY is an integer that is equal to the dimension of the ostensible
phase space (; 2dCN

i=1 l i=0 for Hamiltonian systems), and the accessible
phase space volume neither expands nor contracts. In the case where DKY
is not an integer but the ostensible phase space dimension is large,6 the

6 Of order O(NA), NA=Avogadro’s Number=O(1023).

Lyapunov spectrum is expected to approach a continuum distribution, (13)

leading to NKY % DKY. Hence in a nonequilibrium steady state, certain
NKY-dimensional volume elements are expected to remain approximately
unaltered by the time evolution. The singularities of the full probability
distribution function, which are due to the phase space contraction, do not
manifest themselves on these NKY-dimensional volume elements.

It is important to remember that for real thermodynamic systems the
actual dimensional decrease is tiny. For 1 mole of liquid argon sheared at
the maximum shear rate that is possible before the flow would become
turbulent, the difference between the Kaplan–Yorke dimension and the
ostensible phase space dimension is O(1). (13) The relative dimensional
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decrease is JUST (6NA−DKY)/6NA % 10−23! Consequently, it is relevant to
consider the behavior of nonequilibrium systems in the weak field limit.
Recently, an interesting relation has been found between transport coeffi-
cients and DKY, in the weak field limit. (13) Combining this relation with our
(17), we find an exact relation for the rate of change of the Gibbs entropy
in terms of the Kaplan–Yorke dimension, in the weak field limit:

lim
tQ.
ṠG(t)=kB C

2dCN

i=1
l i % −kBlmax(Fe=0)(2dCN−DKY(Fe)). (23)

The average rate of decrease in the steady state Gibbs entropy is for weak
fields, proportional to the product of the maximal equilibrium Lyapunov
exponent and the dimensional decrease of the steady state attractor from
the ostensible phase space dimension.

We now see why the Gibbs entropy of a system keeps decreasing. If we
start from an ensemble of equilibrium systems, and evolve them in time
towards a nonequilibrium steady state, the volume of the phase space
accessed by the ensemble collapses in time, and vanishes in the steady state
limit. While in equilibrium a phase space subset can be assigned a positive
probability only if it has a non-vanishing (ostensible) phase space volume,
in the case of nonequilibrium steady states there are sets with positive
probabilities but vanishing volumes. Since the Gibbs entropy is computed
as an integral over the ostensible phase space, the steady state Gibbs
entropy diverges towards negative infinity, as the system converges to the
steady state.

From a mathematical point of view, this is expressed by the fact that
the Gibbs entropy is defined only for phase space distributions which are
absolutely continuous with respect to the Lebesgue measure on the osten-
sible phase space, i.e., distributions of the form dm(C)=f(C) dC as used
above, where f is the (integrable) density function. This is a consequence
of the fact that the Gibbs entropy is not the average of a generic (e.g.,
smooth) phase variable but is, in a sense, the average of the logarithm of
the distribution itself. Now, the dissipativity of NEMD dynamics in the
presence of any (hence also arbitrarily small) nonvanishing field implies
that the corresponding steady state distribution has no density, i.e., that the
distribution is singular, and that the Gibbs entropy does not exist.

4. A STRIKING FACT

The classical subject of linear irreversible thermodynamics (14) is based
on the assumption that in nonequilibrium states the local nonequilibrium
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thermodynamic entropy per particle is, in the weak field limit, the same as
the equilibrium thermodynamic entropy per particle for an equilibrium
system at the corresponding thermodynamic state point (i.e., local temper-
ature and density). Our considerations on the divergence of the Gibbs
entropy imply that in contradistinction to the situation at equilibrium, and
regardless of how close a system may be to equilibrium, the Gibbs entropy
of dissipative systems—such as the NEMD models—cannot be the non-
equilibrium thermodynamic entropy as is used in linear irreversible ther-
modynamics. The striking fact is that there seems to be no smooth transi-
tion of the probability phase space distribution from its regular equilibrium
form to its singular nonequilibrium steady state form.

Nevertheless, the entropy of a system prepared in an equilibrium state
coincides with its Gibbs entropy, and linear irreversible thermodynamics
is a successful macroscopic theory built around the assumption of local
thermodynamic equilibrium and therefore of a finite nonequilibrium
entropy. This suggests that a dynamical definition of a nonequilibrium
entropy should be related to SG, at least in the weak field regime, close to
thermodynamic equilibrium.

Also, the abrupt loss of meaning undergone by SG in the transition
from the equilibrium state to any nonequilibrium steady state appears to be
at odds with the analysis of the previous section, which shows that only
small dimensional changes affect the attractors of Gaussian systems subject
to small field variations around zero. This is further evidenced in the por-
traits of the phase space distributions of such simple (and low dimensional)
systems as the nonequilibrium Lorentz gas. (15)

For instance, consider the equations of motion:

q̇=p

ṗ=E · (1−pp/p2)
(24)

for one point particle of mass 1, moving with constant speed
(p2=p2x+p

2
y=1), which is elastically scattered by disks placed on a

regular triangular lattice tiling the 2-dimensional plane, and subjected to an
external field E=(E, 0). Let us take disks of radius 1, and let the closest
interdisk distance be w=0.236, as in ref. 16. We note that the ostensible
phase space dimension for these equations of motion is 3. This is already
too high a dimension to conveniently visualize, but there is a direct corre-
spondence between the motion in this 3-D hypersurface and the dynamics
of the Poincaré map obtained by stroboscopically following the motion of
the particle from collision to collision. In this case one looks only at the
time evolution of the pair of coordinates (f, g) where f ¥ [0, 2p] — If is the
angle with respect to the x-direction which individuates the collision point
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on the surface of a scatterer, g=sin(h−f) ¥ [−1, 1] — Ig and h ¥ [−p, p]
is the angle with respect to the x-direction of the outgoing velocity right
after a collision. The coordinate g is the component of p along the line
tangent to a scatterer at the collision point. The dynamics in the (f, g)-
plane is then easy to visualize and carries all the nontrivial information of
the dynamics.

The equilibrium (E=0) invariant probability distribution of the
coordinates (f, g) is uniform in W=If×Ig, while the presence of an exter-
nal field leads to fractal distributions which are more and more evident as
E grows. However, despite the fact that the linear regime for one such
model of Lorentz gas can be estimated to be bound by |E| < 10−6, (17) so
that larger fields should reveal themselves quite clearly in the phase space
portraits, our Figs. 1 and 2 show that this is not the case below rather large
fields, i.e., fields of order O(10−1). This is further confirmed by the study of
the generalized dimensions of the attractors of the nonequilibrium Lorentz
gas, (18–20) which shows that the coarser generalized dimensions remain equal
to 2 in the presence of small fields, while the finer generalized dimensions
vary smoothly, decreasing as the field grows. In other words, the invariant
probability distribution of the nonequilibrium Lorentz gas does not appear
to undergo any abrupt change from the equilibrium to the near equilibrium
steady states, at least on a level of description that seems appropriate for
physical observations. The same is expected to be the case for the many
particle systems described by the more general equations of motion (2),
albeit not directly testable with present day technology.

Fig. 1. Distributions of 6×106 points (f, g) generated by the dynamics of the periodic non-
equilibrium Lorentz gas with E=0.1 (left panel) and E=1 (right panel). Decreasing E, less
and less structured distributions are obtained, so that E=0 corresponds to the uniform dis-
tribution. However, it is obvious that distributions which cannot be distinguished from the
uniform one, in practice, can be obtained with relatively high fields.
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Fig. 2. Distributions of 6 × 106 points (f, g) generated by the dynamics of the periodic non-
equilibrium Lorentz gas with E=2.1 (left panel) and E=2.2 (right panel). For fields between
E=1 and E=2, the support of the distribution changes gradually, concentrating on smaller
and smaller sets. Differently, the transition from E=2.1 to E=2.2 is abrupt, as described in
refs. 14 and 15, but these are exceedingly high fields.

Therefore, we argue that there is a level of description within which
some quantity related to the Gibbs entropy should change little in the
passage from equilibrium to near equilibrium states, similarly to the physi-
cal entropy. This poses the problem of the definition of one such quantity
that could represent the physical entropy of a particle system in near equi-
librium steady states. This is the question investigated in the next section.

5. GREEN’S EXPANSION FOR THE ENTROPY

As remarked above, the dimensional reduction that occurs in driven
particle systems modeling real nonequilibrium thermodynamic systems is
tiny. Moreover, much more generally than just in the case of the Lorentz
gas, small fields should produce only small modifications in the corre-
sponding phase space distributions, despite the abrupt changes suggested
by the transition from absolutely continuous to singular distributions. This
disparity suggests that if the Gibbs entropy were written as a series involv-
ing distribution functions of reduced order, then we might be able to obtain
a better understanding of the divergence of the steady state Gibbs entropy,
and perhaps even a useful way of renormalizing the divergence (Chapt. 10,
ref. 1).

For simplicity we assume that all particles are identical. This means
that all particles must feel the combined effects of the dissipative external
field and the ergostat. To retain separate wall regions means that the
system must be treated as a mixture.
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H. S. Green (21) used Kirkwood’s factorization (1942) of the N-particle
distribution function to write an expansion for the entropy. If

fm(C1,..., Cm, t) — F dqN dpN · · · dqm+1 dpm+1 f(C, t) m=1,..., N (25)

are the partial m-body distribution functions, and we define the N
z-functions as

ln f1(C1, t) — z1(C1, t)

ln f2(C1, C2, t) — z2(C1, C2, t)+z1(C1, t)+z1(C2, t)

ln f3(C1, C2, C3, t) — z3(C1, C2, C3, t)+z2(C1, C2, t)+z2(C1, C3, t)

+z2(C2, C3, t)+z1(C1, t)+z1(C2, t)+z1(C3, t)

x

(26)

then Green showed that the Gibbs’ entropy can be written as the sum:7

7 If we wish to retain distinct thermostatting walls, the Green expansion entails a double sum
over wall and system particles. There are no fundamental differences in the general conclu-
sions from both approaches.

SG(t)=−NkB 3
1
1!

F dC1 f1(C1, t) z1(C1, t)

+
1
2!

F dC1 dC2 f2(C1, C2, t) z2(C1, C2, t)+· · · 4

=−NkB ˛
1
1!

F dC1 f1(C1, t) ln[f1(C1, t)]

+
1
2!

F dC1 dC2 f2(C1, C2, t)

× ln[f2(C1, C2, t)/(f1(C1, t) f1(C2, t))]

+· · ·

ˇ
— (S(1)(t)+S(2)(t)+S(3)(t)+· · ·+S(N)(t)), (27)

with the shorthand notation Ci=(q i, pi). At equilibrium this expansion
converges rapidly. In a Lennard-Jones fluid the first 2 terms contribute
more than 80% of the total entropy over the entire fluid regions of the
equilibrium phase diagram. (22, 23) We note that in a thermodynamic system
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with pair interactions (e.g., a Lennard-Jones system), other thermodynamic
properties depend only on low order distribution functions. For example,
energy and pressure are only dependent on singlet and pair distribution
functions, the specific heats and the thermodynamic temperature (“E/“S|V)
only on singlet, pair and triplet distributions. Equilibrium thermodynamics
thus involves only the very lowest order distribution functions defined in an
exceedingly high dimensional phase space. Combining these observations
with the fact that for Newtonian fluids under typical flow conditions the
dimensional decrease of the steady state attractor is tiny (1 part in 1023!),
we foresee a reconciliation of the divergence of the Gibbs entropy and the
hypothesis of local thermodynamic equilibrium.

In nonequilibrium steady states, the definition (25) of the partial
m-body distribution functions cannot be used because they are based on
the existence of a full phase space density fN(C, t), which does not exist.
However, the notion of a partial m-body distribution still makes sense in a
system of N identical but interacting particles. The partial m-body distribu-
tion describes the steady state statistics of the motion of the any m particles
(m°N), (i.e., as the invariant probability measure mm in the m-particle
space Wm of coordinates (C1,..., Cm)). It seems clear that for m°N the mm
must have a density fm, since they are obtained projecting down the full
phase space probability distribution onto subspaces of much lower dimen-
sion, hence performing many regularizing operations. In other words, the
low order probability distributions lose information about the finely
detailed, possibly fractal, full phase space distribution, and should not be
singular.8

8 In this regularisation we assume that there is no connection between the singularity struc-
tures apparent in fN, and the particle index. Such connections do exist in the noninteracting
N-particle Lorentz gas. For this system the very obvious connection is, mN=êN

i=1 m1.
However, for interacting N-particle systems, no such connections are expected.

This hypothesis cannot be checked in many particle systems, because
of the difficulty of numerically constructing probability distributions in
high dimensional spaces. However, using the Poincaré map considered in
the previous section, we can support the idea that projections produce
regular distributions. Let mE(d(f, g) be the stroboscopic phase space dis-
tribution, which is known to be singular for non-vanishing E, and to be
uniform for E=0. We construct the two distributions lE(df) and nE(dg),
building the histograms of the R values taken by the variables f and g on a
simulation of R collisions, using partitions of the intervals If and Ig made
of B cells of equal size. Then, for fixed B, we let R increase to obtain the
probability distributions corresponding to the partitions made of B cells,
and successively we let B grow to approximate lE and nE better and better.
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Fig. 3. Distributions of the variable f for E=0, 0.1, 1, and 2.2, obtained with B=100
subdivisions of the interval If (left panel). The straight horizontal line represents the uniform
equilibrium distribution. The number of points used is R(E=0.1)=2.344×106, R(E=1)=
3.144×106, and R(E=2.2)=2.745×106. The right panel is a magnification of the rectan-
gular box in the left panel containing a piece of the distributions with E=0, 0.1. Here, the
piecewise linear curve is the distribution for E=0.1 portrayed in the left panel, while the
points with error bars represent the corresponding distribution obtained with B=200 and
same R. For the sake of clarity, only the two smallest values of B used have been reported, but
the same features have been observed up to B of order O(104).

The results of this procedure are portrayed in Figs. 3 and 4 for
E=0.1, 1, and 2.2. Figure 3 shows the histograms of the variable f,
while Fig. 4 those of the variable g and, in both, the horizontal straight line
represents the equilibrium uniform distribution. The histograms are not
particularly smooth, but consistent with the hypothesis that lE and nE do
have a density, which we denote by PE, f and PE, g respectively. For instance,
the right panels of these figures show that, if we fix R and let B grow, the
histograms become more irregular; but this happens because the same
number of events must be used in a larger number of bins, giving rise to
less accurate distributions. This loss of accuracy is reflected on the error
bars which grow, keeping within themselves any distribution obtained with
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Fig. 4. Distributions of the variable g for E=0, 0.1, 1, and 2.2, obtained with B=100 sub-
divsions of the interval Ig (left panel). The straight horizontal line represents the uniform
equilibrium distribution. The number of points used to build these distributions is the same as
in Fig. 3. The right panel is a magnification of the rectangular box in the left panel containing
a piece of the distributions only for the part E=0 and E=2.2. Here, the piecewise linear
curve is the distribution for E=2.2 portrayed in the left panel, while the points with error
bars represent the corresponding distribution obtained with B=200 and same R. Similarly to
Fig. 3, only the two smallest values of B used have been reported.

sufficiently large B and R.9 If, on the other hand, we fix B and let R grow,

9 Note that we have drawn only one set of error bars, for the sake of figure readability. Had
we drawn both sets of error bars in the right panels of Figs. 3 and 4, the overlap of the dis-
tributions obtained with different B would have looked even more complete.

no sensible variation on the distribution is noticed after R has exceeded a
certain value RB, which depends on B. As a consequence, the quantities

Sf(E)=−F
If
dfŒ PE, f(fŒ) ln PE, f(fŒ); Sg(E)=−F

Ig
dgŒ PE, g(gŒ) ln PE, g(gŒ)

(28)

are expected to take finite values as, indeed, seems to be the case. We
approximated these integrals using the histograms mentioned above, and
then we varied both B and R, to see if the corresponding approximate
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values converge to definite values for each E. For every field E and fixed
simulation length R, we found that Sf and Sg decrease as B grows, but also
that the rate of decrease is slower for larger R, suggesting that such ratio
would vanish in the RQ. limit. Indeed, at least for not too large E,
Sf and Sg are easily seen to converge to given positive values when B is kept
fixed and R is increased. In particular, for E=0.1 these limiting values are
Sf(0.1)=1.8374(1) and Sg(0.1)=0.6931(1) (i.e., with an uncertainty of
±1 in the fourth digit), which are very close to the equilibrium values
Sf(E=0)=1.83788 and Sg(E=0)=0.693147, obtained from the
projected uniform distributions. For the largest E ’s, it is not equally easy
to extrapolate Sf and Sg in the limit RQ., but it looks quite plausible
that one such limit exists and is a positive number, as evidenced also by
Fig. 5. There, each panel gives Sf as a function of B for several values of R:
the left panel refers to E=0.1 while the right panel refers to E=2.2! The
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Fig. 5. Values of Sf as a function of B for E=0.1 (left panel) and E=2.2 (right panel). The
different curves are obtained with different values of R, as indicated by the labels, in which K
stands for 103 andM for 106. The exact values of Sf are obtained taking first the RQ. limit
and later the BQ. limit. This procedure yields Sf(E=0.1)=1.8374(1) with a small numer-
ical effort, while Sf(E=2.2) needs much longer runs, presently out of our reach. However, it
is quite reasonable to conclude that also in the case E=2.2 the limit Sf exists and is a positive
number.
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results for intermediate E ’s are similar, and appear to connect smoothly
the data of these two extreme cases.

Therefore, in accord with our conjectures, the projected distributions
appear to be non-singular even at rather large E, and to yield values Sf and
Sg close to the equilibrium ones if E is small, despite the fact that the stro-
boscopic phase space distribution is singular, and the corresponding Gibbs
entropies not defined for any E > 0.

On the grounds of these observations, it is of interest to ask, for many
particle systems, what is the highest dimensionality of the projection with
nonsingular projected distribution? We propose the following:

Definition. For dissipative N-particle systems, let the Green dimen-
sion, NG, be 2dC times the largest integer for which the corresponding
partial contribution to Green expansion for the entropy remains finite, i.e.,

lim
tQ.
|S(m)(t)|=|S

.

(m) | <., for 2dCm [NG < 2dCN (29)

lim
tQ.
|S(m)(t)|=., for NG < 2dCm [ 2dCN. (30)

Our discussion of the Kaplan–Yorke dimension suggests that NG
should be approximately equal to NKY. However, as noted earlier, one
obvious violation of this idea is afforded by the systems of independent
(non-interacting) particles, including the many particle Lorentz gas made of
many replicas of the same 1-particle system discussed in ref. 17. Indeed, the
phase space distributions of such systems factorize as products of 1-particle
distributions, each of which is singular in its 3d-dimensional phase space.
Therefore, the integration over any number m of particle coordinates does
not remove the singular character of the corresponding reduced distribu-
tions and S(m) is not defined. Although non-interacting particle systems
may be pedagogically useful, they are in fact, ensembles of 1-particle
systems, as pointed out in ref. 17 and not even as idealized models, relevant
in the description of near equilibrium thermodynamics. In fact, due to the
lack of collisions, non-interacting particle systems do not give rise to local
equilibrium states, which is a prerequisite for the thermodynamic quantities
to be defined. (14) 10

10 In the case of the Lorentz gas, the elastic collisions of the particles with the fixed scatterers
cannot give rise to local Maxwellian distributions or to any thermodynamic force.

Hence, we conjecture that for interacting particle systems the Green
dimension exists and equals the Kaplan–Yorke dimension, i.e., the
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discriminating dimension for which (29), (30) hold is NG=NKY. At small
fields, where linear irreversible thermodynamics applies, we expect that

lim
tQ.
S(m)(t; Fe)=S

.

(m)(Fe) % S
.

(m)(Fe=0)+O(F
2
e), -m <N. (31)

This can be reconciled with the equation of change for the Gibbs entropy
only if

lim
Fe Q 0

lim
tQ.
SN(t; Fe)= lim

Fe Q 0
S.N(Fe)=−. (32)

and

lim
Fe Q 0

lim
tQ.
Ṡ(N)(t; Fe)= lim

Fe Q 0
lim
tQ.
ṠG(t; Fe)=− lim

Fe Q 0
lim
tQ.
dN kBOa(t)P=0.

(33)

In other words we argue that in the zero field limit, where linear irre-
versible thermodynamics and Green–Kubo relations are expected to be
valid, the entire divergence of the Gibbs entropy is carried by the last term
in the Green-expansion. All the terms that are characteristic of low order
distribution functions are finite and differ from their equilibrium values by
time independent amounts that are proportional to F2e . For sufficiently
small fields these differences in the thermodynamic entropy are insignifi-
cant and the system is said to be in local thermodynamic equilibrium. At
the same time the Gibbs entropy diverges in the long time limit, towards
negative infinity. We argue that this divergence cannot be seen in the
thermodynamic entropy of the system because it is manifest only in extre-
mely high order distribution functions. This divergence does however,
liberate entropy to the surroundings: the so-called spontaneous entropy
production of linear irreversible thermodynamics. For constant internal
energy systems in a steady state, this entropy production is equal in mag-
nitude but opposite in sign, to the rate of change of the system’s Gibbs
entropy. Therefore, the—to many extents uninteresting—singularity of the
phase space distribution acquires significance determining the steady state
rate of energy dissipation into heat, for the NEMD models whose phase
space contraction rate can be identified with the entropy production rate.

6. CONCLUSION

The definition of entropy away from equilibrium has been a central
problem in statistical mechanics since the time of Gibbs himself. The most
common ‘‘solution’’ to this problem has been to attempt to define a coarse
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grained Gibbs entropy (pioneered by Gibbs, (10) see also refs. 24 and 25 but
note the cautions given in ref. 26).

Our approach [ref. 1, Chapt. 10] is quite different. As stressed in the
literature (see, e.g., refs. 1, 26, and 27), the reason for the divergence of the
Gibbs entropy is the loss of dimensionality in the steady state attractor.
Using the fact that in macroscopic thermodynamic systems this dimension
loss is miniscule, we use H. S. Green’s 1952 expansion of the Gibbs entropy
in terms of partial distribution functions to approximate the thermody-
namic entropy as a series of integrals over smooth lower dimensional func-
tions. Until the dimension of these integrals approaches the dimension of
the steady state attractor (’ Kaplan–Yorke dimension), each integral is
expected to be well behaved. This procedure is extraordinarily difficult to
carry out in practice, (1, 22, 23) but it is expected to lead to a well defined
reduced Gibbs entropy because the entropy is estimated from within the
dimensionality of the steady state attractor.

In the zero field limit where the dimension loss is quadratic in the dis-
sipative field, our approach leads to a straightforward understanding of
Maxwell’s postulate of local thermodynamic equilibrium. The reduced
Gibbs entropy converges to the equilibrium Gibbs entropy quadratically in
the field. In this limit the entire divergence of the Gibbs nonequilibrium
entropy is carried by the last term in the Green entropy expansion which
involves distribution functions which are of the order of Avogadro’s
number!

The entropy absorbed by the thermostat is seen to result from the
collapse of the distribution function for the entire system towards a steady
state attractor that has lower dimension than the ostensible dimension of
phase space. This ‘‘spontaneous entropy production’’ is seen to be the most
important physical consequence of the loss of dimensionality.

One might object that our analysis is invalidated by our use of an
artificial (time reversible) ergostat. However this thermostat can be made
arbitrarily remote from the system of physical interest. (8) This system
cannot ‘‘know’’ the precise details of how entropy was removed at such a
remote distance. This means that the results obtained for the system using
our simple mathematical ergostat should not differ substantially from those
we would infer for the same system surrounded (at a distance) by a real
physical thermostat (say with a huge heat capacity), in accord with emerg-
ing theory on the equivalence of nonequilibrium ensembles mentioned in
the introduction.

One should note that the form of our equations of motion (2) is quite
general. In particular this form encompasses the possibility of treating
ergostatted Rayleigh–Benard flows or other spatially inhomogeneous
systems. In these spatially inhomogeneous systems, (6) still holds—the
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entropy absorbed (emitted) by the thermostatting walls and defined in (5),
is still related to the negative of the rate of change of the Gibbs entropy for
the entire system. Further if such spatially inhomogeneous systems do have
a steady state then we expect that the relationship of the rate of change of
the Gibbs entropy to the Lyapunov spectra and the Kaplan–Yorke and
Green dimensions still holds.

For wall thermostatted rather than homogeneously thermostatted
systems the mathematical treatment of the Green expansion will become
much more complex with the entropy being written as a double sum over
system and wall particles. However, we still expect that when the dimension
of the integrals in a term appearing in the expansion is less than the
Kaplan–Yorke dimension, that term will make a finite contribution to the
sum. Conversely if the dimension of the relevant integral is greater than
the Kaplan–Yorke dimension that term is expected to be infinite. We remark
that calculating the entropy production in an inhomogeneous system by
spatially integrating the local entropy source strength is a complex task.
Also, in such systems although local kinetic temperature inside the walls
may vary from place to place, nevertheless (5) still holds.

One might ask how long it takes the accessed phase space to collapse
onto the steady state attractor. From (5), (20) we see that in the small field
limit

VC(t) % VC(0) exp[−L(Fe=0) VF
2
e t/kBT] (34)

where L(Fe=0) is the limiting zero field transport coefficient. This would
suggest that in the zero field limit the characteristic time for the collapse
onto the steady state attractor diverges to infinity as F2e . However this is
misleading because as the field goes to zero the dimension of the collapsing
subspace also goes to zero. The ostensible phase space volume element, VC,
is the product of an invariant Kaplan–Yorke volume whose dimension is
of course DKY, and a collapsing volume whose dimension is 2dCN−DKY
=O(F2e). Asking how fast VC collapses onto the attractor is equivalent to
asking how rapidly the collapsing volume, collapses. Canceling the
invariant Kaplan–Yorke volume from both sides of (34) and using (23), we
can write the evolution of the collapsing volume as

L (2dCN−DKY)col (t) % L (2dCN−DKY)col (0) exp[−lmax(Fe=0)(2dCN−DKY(Fe)) t],
(35)

in the small field, long time limit. Now it is trivial to see that in this same
limit, the equation of change for the collapsing length is just

Lcol(t) % Lcol(0) exp[−lmax(Fe=0) t]. (36)
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This leads us to conjecture the following: the length associated with the
limiting small field collapse towards the steady state attractor decreases at
a rate that is independent of the magnitude of the external field and the
ostensible dimension of phase space. This rate is in fact as fast as it can
possibly be since it is given by the largest Lyapunov exponent.

The fundamental significance of entropy in statistical thermodynamics
results from the fact that this quantity satisfies a number of extremum and
variational properties both at equilibrium and close to equilibrium where
linear irreversible thermodynamics is valid. (14) We now recall that even
far from equilibrium, the entropy absorbed by the ergostat S—Eq. (5),
satisfies fundamental and quite general Fluctuation Theorems. Take for
example, an ensemble of isoenergetic systems that is initially at equilibrium
and subject to ergostatted dissipative dynamics for t > 0, (2). It has been
proved (9, 28–30) that the time averaged entropy absorption S̄(t) satisfies fluc-
tuation relations which show that as the system size and the averaging time
t increase it becomes exponentially more likely that the entropy absorbed
by the ergostat is positive rather than negative.
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